If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-8k-25=0
a = 1; b = -8; c = -25;
Δ = b2-4ac
Δ = -82-4·1·(-25)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{41}}{2*1}=\frac{8-2\sqrt{41}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{41}}{2*1}=\frac{8+2\sqrt{41}}{2} $
| 3x=x+1=4x-x=10 | | 1,7(14-7p)-2=-2(1,9p+3)6 | | 9=5+5x/54 | | 3x-40+2x+19=180 | | -x+5=x-2x=-4 | | 7/6a+4/3=-1/3 | | 3x+4=19# | | 3=1,2b+11 | | -10x-19=-18x+91 | | 0.8^(3x-1)=1.25 | | 12-3x=-51 | | F(x)=x3+5x20+2x | | 0.8^3x-1=1.25 | | 3p-22=p | | 1839=2.1x | | -5+0=4m+8 | | 5x=1/2(2x-8)-5/4(x+8) | | (15/8)z+1/4=4 | | 15/8*z+1/4=4 | | 9x+53=-10 | | 9x+18=12x-6 | | 6x+16=3x-32 | | y/12+6=-11 | | 6n-5/3-n=2n+7/9+2 | | 4x=3x+3x | | y+3/8=-1/4 | | 8–2c=4 | | 6x+10=3x+55 | | (3/4x+2)=8(3/8)x-4 | | 2+22=-4(5x-6) | | 2z+0.98=z-0.522 | | (3/4x+2)=8(3/8x-4) |